
Multithreading an industry-standard
TelecommunicaTionS applicaTion
Optimization to take full advantage of the
ultrasParC® t2 processor
White Paper
January 2009

abstract

this sun Microsystems white paper is oriented toward a technical audience. it assumes the reader

is familiar with the broad concepts of multicore/multithreaded microprocessors, and with

ultrasParC® t2 processor architecture.

sun Microsystems, inc.

Table of Contents

Introduction...3

Chip Multithreading (CMT) Doubles Throughput ..4

Attaining the Breakthrough: Step by Step ...5

Preliminary planning phase ... 5

testing suitability of application conversion to multithreading 5

understanding architectures that support multithreading 5

Code profiling ... 6

thread distribution ... 6

Preventing deadlock .. 7

Fine-tuning for efficiency ... 7

application-level scalability ... 7

system-level scalability ... 8

scheduling ... 8

results ... 8

Conclusion ... 10

sun Microsystems, inc.3 introduction

Chapter 1

Introduction

in recent years, the telecommunications industry has seen rapid expansion of its

customer base, especially in the emerging economies of asia and latin america. the

size of the added population served is in the hundreds of millions, in both fixed and

mobile networks. these new subscribers demand complex service offerings, while at

the same time being extremely price conscious and requiring rock-solid reliability in

small form factors.

the solution has been to support the new users with converged services. For effi-

ciency, these need to be based on a single access-independent unified platform that

provides vastly greater performance. the increased throughput for these integrated

networks has to be achieved without appreciable increase in power, space, heat

dissipation, and, most important, equipment cost. this has led to high demand for

consistent and reliable software stacks running on highly efficient blades. these

must adhere to the atCa chassis form factor, which is supported by almost all voice

and network equipment manufacturers.

One such industry-standard stack is provided by Continuous Computing, a global

provider of integrated services that helps telecommunications equipment manufac-

turers deploy next-generation networks. among the company’s key offerings is the

trillium software suite, a line of more than 60 standards-based telecommunications

protocols. a key product among these is the session initiation protocol (siP), which

forms the backbone for internet-based communications.

siP is the industry-standard signaling protocol for VoiP, widely used for setting up

and tearing down multimedia communications sessions such as voice and video calls

over the internet. it is designed to be independent of the underlying transport layer,

whether it is transmission control protocol (tCP), user datagram protocol (udP), or

stream control transmission protocol (sCtP). it is widely used for Web-based appli-

cations such as videoconferencing, instant messaging, streaming multimedia, and

online games — and the trillium siP is the industry leader. sun’s advances in CMt

have taken trillium to new levels of throughput. this paper will examine how this

revolutionary advance was brought to bear on the industry.

sun Microsystems, inc.4 Chip Multithreading (CMt) doubles throughput

Chapter 2

Chip Multithreading (CMT) Doubles Throughput

the siP software offering was originally offered in a single-threaded mode. as processor

frequencies became capped due to heat dissipation and resultant inefficiencies,

trillium sought ways to meet its telecommunications customers’ needs for vastly

greater throughput at little or no extra cost. an innovative path was offered by the

thread-level parallelism that is integral to the multicore architecture of sun’s

ultrasParC t2 processor.

in May 2008, with a little code revision, Continuous Computing was able to run the

trillium multicore siP on a sun netra™ t5220 server using an eight-core, multithreaded

ultrasParC t2 processor, and thereby achieve a breakthrough rate of 6,000 calls per

second. this was more than twice as many calls as any other processor that they

had previously tested on. Most important, the application effectively utilized all 64

available threads to scale performance through higher CPu utilization, rather than

by addition of more CPus. this meant the company needed less than half its previ-

ous hardware footprint to serve the same number of customers, thereby reducing

infrastructure and power costs while improving compute density.

sun Microsystems, inc.

1. “developing and tuning applications on ultrasParC t1 Chip Multithreading systems,” by denis sheahan,
sun.com/blueprints/1205/819-5144.pdf.

5 attaining the Breakthrough: step by step

Chapter 3

Attaining the Breakthrough: Step by Step

Preliminary planning phase
the overall project needed the engagement of two software engineers for a total

period of three months. One had experience in application architecture and did the

actual code changes, while the other took responsibility for the Qa function. they

began by using tools and documents recommended by sun. the results of this general

analysis helped them profile their application and determine where they would get

the most impact in return for changing aspects of their code. Once they had ad-

dressed the high-return changes, they were able to proceed to fine-tuning.

Testing suitability of application conversion to multithreading
the first step was to examine how suitable the application was for conversion to mul-

tithreading. sun’s Coolthreads™ selection tool (cooltst) was used for this purpose.

the cooltst observes a running workload and applies various heuristics to assess

whether it is suitable for systems based on ultrasParC t1 and t2 processors. the

tool bases its recommendations on two main criteria. the first is an analysis of the

percentage of floating-point instructions. if this percentage is high, the workload is

more suitable for an ultrasParC t2 processor than an ultrasParC t1 processor. More

important, cooltst also evaluates the degree of potential thread-level parallelism, as

measured by the spread of CPu consumption among software threads. it also evalu-

ates instruction-level parallelism, as measured in cycles per instruction (CPi).

trillium’s output from running this test was green, indicating the siP application

was a highly parallel workload that could exploit the hardware parallelism of

CMt processors to achieve high throughput.

Understanding architectures that support multithreading
the next step was to examine the various strategies outlined in the sun BluePrints™1

document for multithreaded applications. the document describes many ways to

maximize system throughput, illustrating how the ultrasParC architecture makes

very efficient use of pipelines to overcome the negative effects of memory latency.

if a particular thread is stalled waiting for memory, its cycles can be directly and

immediately used to process other threads that are ready to run. in addition, if many

threads run the same application, they can benefit from well-designed sharing of the

level 2 cache.

sun Microsystems, inc.6 attaining the Breakthrough: step by step

Code profiling
the siP application was profiled using the standard utilities gprof and OProfile, as

well as iBM rational Quantify. the results provided a snapshot of where the pro-

gram spent the majority of its runtime, indicating the code sections that were prime

candidates for faster execution. in this case, two portions of code lent themselves to

multithreading — one piece was related to the transport layer, the other to process-

ing. the transport layer was stateless, and therefore easier to convert. in networking

applications, it is generally simpler to write multithreaded data plane code, since

it is usually related to store-and-forwarding, without decisions having to be made

based on data content. the remaining bottleneck after that was the CPu-intensive

siP processing code. since this was stateful, it took more time and care to make it

multithreaded, since it was necessary to monitor the data states at all times — as is

usually the case for control plane code.

Thread distribution
in the original application, a single thread was handled by a single processor. With

the multithreaded version, there were now n instances of threads. a decision had to

be made as to the distribution of threads between the different cores: did one con-

tinue sequentially as before, in a round-robin fashion, or design some kind of intel-

ligent apportioning based on packet flow? the best answer was to let the application

function itself determine the way threads were distributed.

in the case of siP, the incoming packets represented thousands of independent

telephone calls, none of which needed to share data with other calls in the stream.

however, the packets related to each particular instance of a call required an aware-

ness of its state — therefore, each connection had to be encapsulated within a

thread, and the distribution was determined by packet flow. the first message in the

header packet often indicates what kind of data follows, helping lead to a decision as

to which available core will be assigned its thread.

a statistical analysis of calls indicated that 90% were of a standard size, especially

in cases such as iP forwarding, and they could all be assigned threads in the same

fashion. the remaining 10% were nonstandard — having five or 10 extra packets per

feed, for example. these were distributed evenly against all threads.

sun Microsystems, inc.7 attaining the Breakthrough: step by step

Preventing deadlock
For multithreaded computing, it is critical to eliminate any point of contention for

a single thread. the simplest way to prevent locking is for each thread to store its

calls and context. in this case, the software designer kept track of the various calls

via a hash table or linked list, and an ultrasParC t2 processor thus had 64 copies

of each data structure. in more complex cases, such as udP servers — in which

data is shared — messaging between the 64 copies would ensure that the data

they carried were synchronized. if, for example, the server were going down, the

messaging would ensure that one copy contained the master data, while all other

copies were terminated before failure.

Fine-tuning for efficiency
Multithreading is easiest to do when all threads are uniform, so a further adjustment

had to be made, depending on the thread type. in this particular case, the trans-

port threads had different profiles than the processing threads, requiring different

treatment. instead of mapping both types of threads — e.g., two transport and six

processing — onto the same core, trillium found they realized greater efficiencies

by mapping all the transport threads to some cores and all the processing threads

to other cores. they also found it was better not to fully load cores designated for

interrupt processing, as they ultimately supported fewer threads — three or four,

instead of eight.

Application-level scalability
applications with less shared data are more scalable because it is less necessary to

lock while memory is accessed. siP systems deal with independent phone connections

that almost never need to share their content, so this proved to scale almost linearly.

at the application level, one should always strive to increase the instruction per cycle

(iPC) count to one or more, ensuring the pipeline is used efficiently and not stalling

while waiting for memory access. if cache utilization is not at least 70–80%, this in-

dicates there is too much thrashing — excessive movement of information between

system and virtual memory — and that data structures should be redesigned to

minimize cache misses. to prevent data structures from having access to and possi-

bly underutilizing two or three caches, the processor enables specific data structures

to be locked to designated caches. in the specific case of siP, the connection control

logs were cache aligned.

sun Microsystems, inc.

System-level scalability
Operating systems (Oss) enabling atomic operations afford the ability to minimize

locking. the solaris™ Operating system supports such instructions, such as load and

store, without interruptions. using these instructions enabled programmers to take

maximal advantage of the ultrasParC processor design.

the Os itself can sometimes dominate cache usage. it is important to separate the

waste from unnecessary housekeeping system calls and to eliminate them by use of

stripped-down versions of the Os. an example of this is the sun netra™ data Plane

software suite, which is bundled with a lightweight runtime environment to achieve

line-rate packet processing speeds.

at the system level, some architectures do not offer a large enough layer 2 cache

for efficient execution. it is possible to use special system calls to change page sizes,

from the standard 4 Kb to 4 Mb, for example, so that all the required data fits into

a single page without swapping. this greatly reduces virtual memory management

overhead.

Scheduling
By using the mpstat and corestat commands, trillium’s programmers were able to

analyze and decide the best way to schedule threads using solaris Os system calls.

Performance gains were also obtainable with efficient interthread communication.

at each step, the programmers’ goal was to make threading configurable, so that

not much effort was needed to scale from 64- to 128-way multicore processors in the

future. telecommunications applications usually call for such customization. enter-

prise and Web applications, on the other hand, are far more uniform and can make

use of the standard optimization flags that are part of the compiler.

Results
With a sun netra t5220 server powered by the eight-core, 64-thread ultrasParC t2 processor,

trillium multicore siP was able to effectively use all available threads and achieve a

record 6,000 calls per second — twice as many as any previous processor tested.

 calls per messages per Tcp processor uDp processor
 second second utilization utilization

 1,000 12,000 11 12

 2,000 24,000 23 24

 3,000 36,000 35 36

 4,000 48,000 49 48

 5,000 60,000 63 62

 6,000 72,000 78 76

8 attaining the Breakthrough: step by step

sun Microsystems, inc.9 attaining the Breakthrough: step by step

Trillium multicore SIP performance on the Sun Netra T5220 server scales linearly
with load.

80

70

60

50

40

30

20

10

0
1,000 2,000 3,000 4,000 5,000 6,000 7,000

TCP Transport

Calls per Second (CPS)

CP
U

 U
ti

liz
at

io
n

(m
ps

ta
t)

UDP Transport

Trillium Multicore SIP Performance on the Sun Netra T5220 Server

sun Microsystems, inc. 4150 network Circle, santa Clara, Ca 95054 usa Phone 1-650-960-1300 or 1-800-555-9sun (9786) Web sun.com

sun Microsystems, inc.

© 2009 sun Microsystems, inc. all rights reserved. sun, sun Microsystems, the sun logo, Coolthreads, netra, solaris, sun BluePrints, and sun netra are trademarks or registered trademarks of sun Microsystems, inc., or its
subsidiaries in the united states and other countries. all sParC trademarks are used under license and are trademarks or registered trademarks of sParC international, inc., in the united states and other countries.
Products bearing sParC trademarks are based upon an architecture developed by sun Microsystems, inc. information subject to change without notice. sunWin #555383 lit. #syWP14778-0 1/09

Chapter 4

Conclusion

the siP application scales linearly with increased load when taking advantage of

the ultrasParC t2 processor’s CMt features. this enables it to provide predictable

performance under load, while significantly reducing costs for revenue-generating

siP-based services, ensuring that operators can meet their service-level agreement

(sla) guarantees to their end users. the ultrasParC t2 processor provides the basis

for an ideal solution for telecommunications vendors to start small and scale fast

while maximizing efficiency, performance, and customer satisfaction.

10 Conclusion

